Answer:
Instantaneous velocity  [tex]= 20[/tex] meter per second
Instantaneous acceleration  [tex]= 6[/tex] meter per second square
Explanation:
Given equation of distance X = [tex]2t+3t^2[/tex]
Instantaneous velocity [tex]= \frac{dX}{dt}[/tex] Â [tex]= 2 + 6 t[/tex]
Substituting the value of t = 3 seconds, we get -
[tex]\frac{dX}{dt} = 2 + 6*3 = 20[/tex] meter per second
Instantaneous acceleration  [tex]= \frac{d^2X}{dt^2}[/tex]  [tex]= 6[/tex] meter per second square